# Reuse Comes to On-Site Systems A Success for One Family

2020 Onsite Wastewater Mega Conference By Gary S. MacConnell, P.E.



501 Cascade Pointe Lane, Suite 103 Cary, North Carolina 27513 Tel: (919) 467-1239

#### What is Reuse Water?

- Wastewater Treatment at a Level Where Water can be Used in a Beneficial Way.
- Protected Human Health.
- Environmentally Sound.
- Profitability is Desirable .



## Wastewater Reclamation & Reuse and the Hydrologic Cycle



#### Why Do We Need Water Reuse?

- > 97% of Earth's Water is Salty.
- +/- 2% is Snow and Ice.
- Leaves +/- 1% for Crops, for Industrial Processes, Beverages, Bathrooms, Kitchens, Etc.
- Quality of Fresh Water is Often Not Adequate.
- The Demand for Water often Exceeds the Water Supply.













## Benefits of Using Reuse Water

- Reduces Demand on Potable Water & Treatment Demands.
- Provides Options for Treated Wastewater.
- Often, the Most Cost-Effective Method for Water/Wastewater Options.
- Trace Nutrients and Minerals can Provide Agronomic Benefits.



## Applications for Reuse Water

- Irrigation of Crops, Landscapes, Golf Courses, Forests, etc.
- Cooling Water Process.
- Non-Food Industrial Water.
- Odorless with Discharge.
- Car Wash.
- Construction (dust control). Other.



## Municipal WWTP - Reuse

- Many Successful Stories.
- Proven Technologies.
- Economies of Scale.
- Regulations for Reuse.
- Often Extra Credit for Competitive Grants.
- Availability of Potable Water.
- Well Established.



## Historical Barriers to Onsite Low Flow Reuse

- Technologies Limited or Non-Existent.
- High Capital and O&M Costs.
- Regulations for Reuse Aimed at Municipal POTWs
  <u>Not</u> Small Systems.
- Lack of Standards
- Non-Existent Government Incentives/Assistance (ex. Solar).
- Not Well Established. MacCONNELL & Associates, P.C.

## What Has Changed with Respect to Onsite Small Flows Reuse

- Technologies Now Available.
- High Capital and O&M Costs (Still a Concern).
- Regulations Stating to Address Low Flow Onsite Reuse.
- NSF Now Has Reuse Standards.
- Non-Existent Government Incentives/Assistance (ex. Solar), (Still a Concern).
- Becoming a Viable Option with Challenging Sites. MacCONNELL & Associates, P.C.

## Who Regulates (Standards)?

- Federal Government (USEPA).
- State Government.
- Local Government.
- Independent Standards (NSF/ANSI).



## Standards NSF / ANSI

| Test               | NSF/ANSI 40 | NSF/ANSI 245   | NSF/ANSI 350   |
|--------------------|-------------|----------------|----------------|
|                    | Domestic    | Nutrient       | Reuse          |
| CBOD 5-Day         | 25 mg/l     |                | 10 mg/l        |
| TSS                | 30 mg/l     |                | 10 mg/l        |
|                    |             |                |                |
| Nitrogen Reduction |             | 50 % Reduction |                |
| Turbidity          |             |                | 5 NTU          |
| Bacteria (e-coli)  |             |                | 14 CFU/100ml   |
| Chlorine Residual  |             |                | 0.5 - 2.5 mg/l |
| рН                 | 6 - 9       |                | 6 - 9          |



# Case History Single Family Home – Raleigh, NC

- Lot Located in Upscale Neighborhood.
- Lot Aesthetically Pleasing.
- Poorly Drained Soils Subsurface Disposal Not an Option.
- Setbacks & Drainage Features Restricted Conventional Irrigation.
- Reuse with Reduced Setbacks Only Option.



#### Membrane Bioreactor (MBR)

- Activated Sludge Process.
- Small Footprint.
- Combines Functions with a Minimum Number of Basins.
- Robust with Changes in Flows.
- Various Types of Tanks (concrete, steel or plastic) can be Used.
- Reuse Quality Water.
  Green Global
  Technologies

## Original System

- NCDENR Permit September 2014.
- 5-Bedroom Residence (600 GPD).
- Membrane Bioreactor (MBR).
- Irrigated 0.27 Acre of Lawn.



## Permit Limits

#### ATTACHMENT A - LIMITATIONS AND MONITORING REQUIREMENTS PPI 001 - Reclaimed Water Generation System Effluent

Permit Number: WQ0036557 Version: 1.2

1. 3 x Year monitoring shall be conducted in March, July, and November.

| E           | FFLUENT CHARACTERISTICS                     | EFFLUENT LIMITS     |                    |                              |                  |                  | MONITORING REQUIREMENTS <sup>2</sup> |                |
|-------------|---------------------------------------------|---------------------|--------------------|------------------------------|------------------|------------------|--------------------------------------|----------------|
| PCS<br>Code | Parameter Description                       | Units of<br>Measure | Monthly<br>Average | Monthly<br>Geometric<br>Mean | Daily<br>Minimum | Daily<br>Maximum | Measurement<br>Frequency             | Sample<br>Type |
| 00310       | BOD, 5-Day (20 ⁰C)                          | mg/L                | 10                 |                              |                  | 15               | 3 x Year <sup>1</sup>                | Grab           |
| 50060       | Chlorine, Total Residual                    | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 31616       | Coliform, Fecal MF, M-FC Broth, 44.5<br>°C  | #/100 mL            |                    | 14                           |                  | 25               | 3 x Year <sup>1</sup>                | Grab           |
| 50050       | Flow, in Conduit or thru Treatment<br>Plant | GPD                 | 600                |                              |                  |                  | 3 x Year <sup>1</sup>                | Estimate       |
| 00610       | Nitrogen, Ammonia Total (as N)              | mg/L                | 4                  |                              |                  | 6                | 3 x Year <sup>1</sup>                | Grab           |
| 00625       | Nitrogen, Kjeldahl, Total (as N)            | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 00620       | Nitrogen, Nitrate Total (as N)              | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 00600       | Nitrogen, Total (as N)                      | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 00400       | рН                                          | su                  |                    |                              | 6                | 9                | 3 x Year <sup>1</sup>                | Grab           |
| 00665       | Phosphorus, Total (as P)                    | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 00530       | Solids, Total Suspended                     | mg/L                | 5                  |                              |                  | 10               | 3 x Year <sup>1</sup>                | Grab           |
| 00076       | Turbidity, HCH Turbidimeter                 | NTU                 |                    |                              |                  | 10               | 3 x Year <sup>1</sup>                | Recorder       |

## Major MBR System Components

- 1,500 Gallon Tank w/ Aerobic & Anoxic/EQ Zones.
- 300 Gallon Tank w/ Aeration & Plate Membrane.
- Pumps Air Diffuser, Permeate, & Effluent.
- Polishing Cartridge.
- UV Disinfection.
- 3,500 Gallon (5-Day) Upset Tank.
- 5,000 Gallon Dosing Tank.
- Controls & Instrumentation. MacCONNELL & Associates, P.C.









## Issues with MBR System

- Did Not Meet Permit Limits.
- Problem w/ Membrane Fouling.
- NCDER Fix or Replace.
- Manufacturer Tried to Get System to Work.
- Last Option Replace System.



## **Replace System Considerations**

- Use as Much Existing Equipment as Possible.
- Proven Technology.
- Costs.
- Minimize Construction Impacts on Residents.
- Meet Permit Limits.



## **Recirculating Media Filter**

- Technology Based on Recirculating Sand Filter.
- Uniform Plastic Media.
- Only Moving Parts are Pumps.
- Simple to Operate and Maintain.
- Expandable, can be Phased.
- Reuse Quality Water.



## Upgraded System

- NCDENR Permit February 2018.
- 5-Bedroom Residence (600 GPD).
- Recirculating Media Filter.
- Irrigated 0.27 Acre of Lawn.



## "Reused" Components

- Tanks.
- Controls.
- Enclosure.
- Irrigation System.



## Permit Limits

#### ATTACHMENT A - LIMITATIONS AND MONITORING REQUIREMENTS PPI 001 - Reclaimed Water Generation System Effluent

Permit Number: WQ0036557 Version: 1.2

1. 3 x Year monitoring shall be conducted in March, July, and November.

| E           | FFLUENT CHARACTERISTICS                     | EFFLUENT LIMITS     |                    |                              |                  |                  | MONITORING REQUIREMENTS <sup>2</sup> |                |
|-------------|---------------------------------------------|---------------------|--------------------|------------------------------|------------------|------------------|--------------------------------------|----------------|
| PCS<br>Code | Parameter Description                       | Units of<br>Measure | Monthly<br>Average | Monthly<br>Geometric<br>Mean | Daily<br>Minimum | Daily<br>Maximum | Measurement<br>Frequency             | Sample<br>Type |
| 00310       | BOD, 5-Day (20 ⁰C)                          | mg/L                | 10                 |                              |                  | 15               | 3 x Year <sup>1</sup>                | Grab           |
| 50060       | Chlorine, Total Residual                    | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 31616       | Coliform, Fecal MF, M-FC Broth, 44.5<br>°C  | #/100 mL            |                    | 14                           |                  | 25               | 3 x Year <sup>1</sup>                | Grab           |
| 50050       | Flow, in Conduit or thru Treatment<br>Plant | GPD                 | 600                |                              |                  |                  | 3 x Year <sup>1</sup>                | Estimate       |
| 00610       | Nitrogen, Ammonia Total (as N)              | mg/L                | 4                  |                              |                  | 6                | 3 x Year <sup>1</sup>                | Grab           |
| 00625       | Nitrogen, Kjeldahl, Total (as N)            | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 00620       | Nitrogen, Nitrate Total (as N)              | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 00600       | Nitrogen, Total (as N)                      | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 00400       | рН                                          | su                  |                    |                              | 6                | 9                | 3 x Year <sup>1</sup>                | Grab           |
| 00665       | Phosphorus, Total (as P)                    | mg/L                |                    |                              |                  |                  | 3 x Year <sup>1</sup>                | Grab           |
| 00530       | Solids, Total Suspended                     | mg/L                | 5                  |                              |                  | 10               | 3 x Year <sup>1</sup>                | Grab           |
| 00076       | Turbidity, HCH Turbidimeter                 | NTU                 |                    |                              |                  | 10               | 3 x Year <sup>1</sup>                | Recorder       |

















#### Test Results

| Parameter           | 3/18/2019 | 7/2/2019 | 11/5/2019 | 3/4/2020 | Average |
|---------------------|-----------|----------|-----------|----------|---------|
| Turbidity mg/l      | 3.4       | 2.3      | 1.8       | 0.5      | 2.0     |
| TSS mg/l            | 2.5       | 2.5      | 5.0       | 2.7      | 3.18    |
| BOD (5-Days)        |           |          |           |          |         |
| mg/l                | 4.2       | 2.0      | 2.0       | 4.7      | 3.23    |
| рН                  | 7.0       | 7.6      | 7.6       | 7.8      | 7.5     |
| Fecal Coliforms     |           | Not      |           |          |         |
| MPN/100 ml          | 1.0       | Sampled  | 1.0       | 1.0      | 1.0     |
| Chlorine Residual   |           |          |           | Not      |         |
| mg/l                | 5.2       | 2.3      | 0.026     | Sampled  | 2.5     |
| Ammonia             |           |          |           |          |         |
| Nitrogen mg/l       | 3.0       | 0.1      | 4.1       | 2.9      | 2.53    |
| Kjeldahl –          |           |          |           |          |         |
| Nitrogen mg/l       | 4.9       | 0.5      | 4.4       | 3.3      | 3.28    |
| Nitrate / Nitrite – |           |          |           |          |         |
| N mg/l              | 24.7      | 2.1      | 17.3      | 7.0      | 12.77   |
| Phosphorus mg/l     | 8.8       | 1.0      | 7.8       | 7.7      | 6.33    |

## Summary

- Recirculating Media Filters can Meet Reuse Requirements.
- Owner and Operator Satisfied with System.
- Cost is Still an Issue.
- Regulations Need to Be Updated to Address Small Onsite Reuse Systems.





